Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Methods Mol Biol ; 2788: 209-226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656516

RESUMEN

Coffea arabica L. is a crucial crop globally, but its genetic homogeneity leads to its susceptibility to diseases and pests like the coffee berry borer (CBB). Chemical and cultural control methods are difficult due to the majority of the CBB life cycle taking place inside coffee beans. One potential solution is the use of the gene cyt1Aa from Bacillus thuringiensis as a biological insecticide. To validate candidate genes against CBB, a simple, rapid, and efficient transient expression system is necessary. This study uses cell suspensions as a platform for expressing the cyt1Aa gene in the coffee genome (C. arabica L. var. Catuaí) to control CBB. The Agrobacterium tumefaciens strain GV3101::pMP90 containing the bar and cyt1Aa genes are used to genetically transform embryogenic cell suspensions. PCR amplification of the cyt1Aa gene is observed 2, 5, and 7 weeks after infection. This chapter describes a protocol that can be used for the development of resistant varieties against biotic and abiotic stresses and CRISPR/Cas9-mediated genome editing.


Asunto(s)
Agrobacterium tumefaciens , Coffea , Coffea/genética , Agrobacterium tumefaciens/genética , Sistemas CRISPR-Cas , Plantas Modificadas Genéticamente/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacillus thuringiensis/genética , Endotoxinas/genética , Toxinas de Bacillus thuringiensis , Edición Génica/métodos , Proteínas Hemolisinas/genética , Regulación de la Expresión Génica de las Plantas , Transformación Genética , Café/genética
2.
Acta Biomater ; 178: 296-306, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38417646

RESUMEN

Manipulation of the lactate metabolism is an efficient way for cancer treatment given its involvement in cancer development, metastasis, and immune escape. However, most of the inhibitors of lactate transport carriers suffer from poor specificity. Herein, we use the CRISPR/Cas9 system to precisely downregulate the monocarboxylate carrier 1 (MCT1) expression. To avoid the self-repairing during the gene editing process, a dual-Cas9 ribonucleoproteins (duRNPs) system is generated using the biological fermentation method and delivered into cells by the zeolitic imidazolate framework-8 (ZIF-8) nanoparticles, enabling precise removal of a specific DNA fragment from the genome. For efficient cancer therapy, a specific glucose transporter 1 inhibitor (BAY-876) is co-delivered with the duRNPs, forming BAY/duRNPs@ZIF-8 nanoparticle. ZIF-8 nanoparticles can deliver the duRNPs into cells within 1 h, which efficiently downregulates the MCT1 expression, and prohibits lactate influx. Through simultaneous inhibition of the lactate and glucose influx, BAY/duRNPs@ZIF-8 prohibits ATP generation, arrests cell cycle, inhibits cell proliferation, and finally induces cellular apoptosis both in vitro and in vivo. Consequently, we demonstrate that the biologically produced duRNPs delivered into cells by the nonviral ZIF-8 carrier have expanded the CRISPR/Cas gene editing toolbox and elevated the gene editing efficiency, which will promote biological studies and clinical applications. STATEMENT OF SIGNIFICANCE: The CRISPR/Cas9 system, widely used as an efficient gene editing tool, faces a challenge due to cells' ability to self-repair. To address this issue, a strategy involving dual-cutting of the genome DNA has been designed and implemented. This strategy utilizes biologically produced dual-ribonucleoproteins delivered by a metal-organic framework. The effectiveness of this dual-cut CRISPR-Cas9 system has been demonstrated through a therapeutic approach targeting the simultaneous inhibition of lactate and glucose influx in cancer cells. The utilization of the dual-cut gene editing strategy has provided valuable insights into gene editing and expanded the toolbox of the CRISPR/Cas-based gene editing system. It has the potential to enable more efficient and precise manipulation of specific protein expression in the future.


Asunto(s)
Estructuras Metalorgánicas , Neoplasias , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , ADN , Ribonucleoproteínas/genética , Lactatos , Glucosa , Neoplasias/genética , Neoplasias/terapia
3.
Environ Geochem Health ; 46(2): 41, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227068

RESUMEN

Stress due to drought lowers crop yield and frequently leads to a rise in food scarcity. Plants' intricate metabolic systems enable them to tolerate drought stress, but they are unable to handle it well. Adding some external, environmentally friendly supplements can boost plant growth and productivity when it comes to drought-stressed plants. In order to prevent the detrimental effects of drought in agricultural regions, environmentally friendly practices must be upheld. Plant growth-promoting rhizobacteria (PGPR) can exhibit beneficial phytostimulation, mineralization, and biocontrol activities under drought stress. The significant impact of the PGPR previously reported has not been accepted as an effective treatment to lessen drought stress. Recent studies have successfully shown that manipulating microbes can be a better option to reduce the severity of drought in plants. In this review, we demonstrate how modifying agents such as biochar, PGPR consortia, PGPR, and mycorrhizal fungi can help overcome drought stress responses in crop plants. This article also discusses CRISPR/Cas9-modifiable genes, increase plant's effectiveness in drought conditions, and increase plant resistance to drought stress. With an eco-friendly approach in mind, there is a need for practical management techniques having potential prospects based on an integrated strategy mediated by CRISPR-Cas9 editing, PGPR, which may alleviate the effects of drought stress in crops and aid in achieving the United Nation Sustainable Development Goals (UN-SDGs-2030).


Asunto(s)
Carbón Orgánico , Sequías , Edición Génica , Agricultura , Productos Agrícolas
4.
Theor Appl Genet ; 137(1): 15, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38184817

RESUMEN

Solanum americanum serves as a promising source of resistance genes against potato late blight and is considered as a leafy vegetable for complementary food and nutrition. The limited availability of high-quality genome assemblies and gene annotations has hindered the exploration and exploitation of stress-resistance genes in S. americanum. Here, we present a chromosome-level genome assembly of a thermotolerant S. americanum ecotype and identify a crucial heat-inducible transcription factor gene, SaHSF17, essential for heat tolerance. The CRISPR/Cas9 system-mediated knockout of SaHSF17 results in remarkably reduced thermotolerance in S. americanum, exhibiting a significant suppression of multiple HSP gene expressions under heat treatment. Furthermore, our transcriptome analysis and anthocyanin component investigation of fruits indicated that delphinidins are the major anthocyanins accumulated in the mature dark-purple fruits. The accumulation of delphinidins and other pigment components during fruit ripening in S. americanum coincides with the transcriptional regulation of key genes, particularly the F3'5'H and F3'H genes, in the anthocyanin biosynthesis pathway. By integrating existing knowledge, the development of this high-quality reference genome for S. americanum will facilitate the identification and utilization of novel abiotic and biotic stress-resistance genes for improvement of Solanaceae and other crops.


Asunto(s)
Solanum , Termotolerancia , Antocianinas , Frutas/genética , Termotolerancia/genética , Solanum/genética , Edición Génica , Cromosomas
5.
Plant Cell Rep ; 43(2): 45, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38261110

RESUMEN

KEY MESSAGE: A high-efficiency protoplast transient system was devised to screen genome editing elements in Salvia miltiorrhiza. Medicinal plants with high-value pharmaceutical ingredients have attracted research attention due to their beneficial effects on human health. Cell wall-free protoplasts of plants can be used to evaluate the efficiency of genome editing mutagenesis. The capabilities of gene editing in medicinal plants remain to be fully explored owing to their complex genetic background and shortfall of suitable transformation. Here, we took the Salvia miltiorrhiza as a representative example for developing a method to screen favorable gene editing elements with high editing efficiency in medical plants by a PEG-mediated protoplast transformation. Results indicated that using the endogenous SmU6.1 of S. miltiorrhiza to drive sgRNA and the plant codon-optimized Cas9 driven by the promoter SlEF1α can enhance the efficiency of editing. In summary, we uncover an efficacious transient method for screening editing elements and shed new light on increasing gene editing efficiency in medicinal plants.


Asunto(s)
Salvia miltiorrhiza , Humanos , Salvia miltiorrhiza/genética , Edición Génica , Protoplastos , ARN Guía de Sistemas CRISPR-Cas , Pared Celular
6.
J Integr Plant Biol ; 66(1): 17-19, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38078380

RESUMEN

A sample delivery method, modified from cut-dip-budding, uses explants with robust shoot regeneration ability, enabling transformation and gene editing in medicinal plants, bypassing tissue culture and hairy root formation. This method has potential for applications across a wide range of plant species.


Asunto(s)
Edición Génica , Plantas Medicinales , Edición Génica/métodos , Plantas Medicinales/genética , Transformación Genética , Plantas Modificadas Genéticamente/genética
8.
Plant Biotechnol J ; 22(1): 216-232, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37792967

RESUMEN

Lipid biosynthesis and transport are essential for plant male reproduction. Compared with Arabidopsis and rice, relatively fewer maize lipid metabolic genic male-sterility (GMS) genes have been identified, and the sporopollenin metabolon in maize anther remains unknown. Here, we identified two maize GMS genes, ZmTKPR1-1 and ZmTKPR1-2, by CRISPR/Cas9 mutagenesis of 14 lipid metabolic genes with anther stage-specific expression patterns. Among them, tkpr1-1/-2 double mutants displayed complete male sterility with delayed tapetum degradation and abortive pollen. ZmTKPR1-1 and ZmTKPR1-2 encode tetraketide α-pyrone reductases and have catalytic activities in reducing tetraketide α-pyrone produced by ZmPKSB (polyketide synthase B). Several conserved catalytic sites (S128/130, Y164/166 and K168/170 in ZmTKPR1-1/-2) are essential for their enzymatic activities. Both ZmTKPR1-1 and ZmTKPR1-2 are directly activated by ZmMYB84, and their encoded proteins are localized in both the endoplasmic reticulum and nuclei. Based on protein structure prediction, molecular docking, site-directed mutagenesis and biochemical assays, the sporopollenin biosynthetic metabolon ZmPKSB-ZmTKPR1-1/-2 was identified to control pollen exine formation in maize anther. Although ZmTKPR1-1/-2 and ZmPKSB formed a protein complex, their mutants showed different, even opposite, defective phenotypes of anther cuticle and pollen exine. Our findings discover new maize GMS genes that can contribute to male-sterility line-assisted maize breeding and also provide new insights into the metabolon-regulated sporopollenin biosynthesis in maize anther.


Asunto(s)
Arabidopsis , Infertilidad , Zea mays/genética , Zea mays/metabolismo , Edición Génica , Sistemas CRISPR-Cas/genética , Simulación del Acoplamiento Molecular , Pironas/metabolismo , Fitomejoramiento , Arabidopsis/genética , Lípidos , Polen/genética , Polen/metabolismo , Infertilidad/genética , Infertilidad/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Adv Mater ; 36(13): e2302901, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38113460

RESUMEN

The rapid progress in the development of COVID-19 mRNA vaccines during the initial year of the pandemic has highlighted the significance of lipid nanoparticles in therapeutic delivery. Various lipid types have been investigated for the effective delivery of mRNA, each with unique functions and versatile applications. These range from their use in cancer immunotherapy and gene editing to their role in developing vaccines against infectious diseases. Nonetheless, continued exploration of novel lipids and synthetic approaches is necessary to further advance the understanding and expand the techniques for optimizing mRNA delivery. In this work, new lipids derived from FDA-approved soybean oil are facilely synthesized and these are employed for efficient mRNA delivery. EGFP and Fluc mRNA are used to evaluate the delivery efficacy of the lipid formulations both in vitro and in vivo. Furthermore, organ-specific targeting capabilities are observed in certain formulations, and their outstanding performance is demonstrated in delivering Cre mRNA for gene editing. These results showcase the potential of soybean oil-derived lipids in mRNA delivery, offering utility across a broad spectrum of bioapplications.


Asunto(s)
Nanopartículas , Vacunas , ARN Mensajero/genética , Aceite de Soja , Edición Génica/métodos
10.
Plant Cell Physiol ; 65(2): 185-198, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38153756

RESUMEN

Glycyrrhizin, a type of the triterpenoid saponin, is a major active ingredient contained in the roots of the medicinal plant licorice (Glycyrrhiza uralensis, G. glabra and G. inflata), and is used worldwide in diverse applications, such as herbal medicines and sweeteners. The growing demand for licorice threatens wild resources and therefore a sustainable method of supplying glycyrrhizin is required. With the goal of establishing an alternative glycyrrhizin supply method not dependent on wild plants, we attempted to produce glycyrrhizin using hairy root culture. We tried to promote glycyrrhizin production by blocking competing pathways using CRISPR/Cas9-based gene editing. CYP93E3 CYP72A566 double-knockout (KO) and CYP93E3 CYP72A566 CYP716A179 LUS1 quadruple-KO variants were generated, and a substantial amount of glycyrrhizin accumulation was confirmed in both types of hairy root. Furthermore, we evaluated the potential for promoting further glycyrrhizin production by simultaneous CYP93E3 CYP72A566 double-KO and CYP88D6-overexpression. This strategy resulted in a 3-fold increase (∼1.4 mg/g) in glycyrrhizin accumulation in double-KO/CYP88D6-overexpression hairy roots, on average, compared with that of double-KO hairy roots. These findings demonstrate that the combination of blocking competing pathways and overexpression of the biosynthetic gene is important for enhancing glycyrrhizin production in G. uralensis hairy roots. Our findings provide the foundation for sustainable glycyrrhizin production using hairy root culture. Given the widespread use of genome editing technology in hairy roots, this combined with gene knockout and overexpression could be widely applied to the production of valuable substances contained in various plant roots.


Asunto(s)
Glycyrrhiza , Triterpenos , Edición Génica , Vías Biosintéticas/genética , Ácido Glicirrínico/metabolismo , Triterpenos/metabolismo , Glycyrrhiza/genética , Glycyrrhiza/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
11.
Plant Physiol Biochem ; 203: 108070, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37816270

RESUMEN

Plant species have evolved diverse metabolic pathways to effectively respond to internal and external signals throughout their life cycle, allowing adaptation to their sessile and phototropic nature. These pathways selectively activate specific metabolic processes, producing plant secondary metabolites (PSMs) governed by genetic and environmental factors. Humans have utilized PSM-enriched plant sources for millennia in medicine and nutraceuticals. Recent technological advances have significantly contributed to discovering metabolic pathways and related genes involved in the biosynthesis of specific PSM in different food crops and medicinal plants. Consequently, there is a growing demand for plant materials rich in nutrients and bioactive compounds, marketed as "superfoods". To meet the industrial demand for superfoods and therapeutic PSMs, modern methods such as system biology, omics, synthetic biology, and genome editing (GE) play a crucial role in identifying the molecular players, limiting steps, and regulatory circuitry involved in PSM production. Among these methods, clustered regularly interspaced short palindromic repeats-CRISPR associated protein (CRISPR/Cas) is the most widely used system for plant GE due to its simple design, flexibility, precision, and multiplexing capabilities. Utilizing the CRISPR-based toolbox for metabolic engineering (ME) offers an ideal solution for developing plants with tailored preventive (nutraceuticals) and curative (therapeutic) metabolic profiles in an ecofriendly way. This review discusses recent advances in understanding the multifactorial regulation of metabolic pathways, the application of CRISPR-based tools for plant ME, and the potential research areas for enhancing plant metabolic profiles.


Asunto(s)
Sistemas CRISPR-Cas , Ingeniería Metabólica , Humanos , Sistemas CRISPR-Cas/genética , Edición Génica , Genoma de Planta , Productos Agrícolas/genética , Suplementos Dietéticos
12.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894996

RESUMEN

CRISPR/Cas9 is an efficient genome-editing tool, and the identification of editing sites and potential influences in the Camellia sinensis genome have not been investigated. In this study, bioinformatics methods were used to characterise the Camellia sinensis genome including editing sites, simple sequence repeats (SSRs), G-quadruplexes (GQ), gene density, and their relationships. A total of 248,134,838 potential editing sites were identified in the genome, and five PAM types, AGG, TGG, CGG, GGG, and NGG, were observed, of which 66,665,912 were found to be specific, and they were present in all structural elements of the genes. The characteristic region of high GC content, GQ density, and PAM density in contrast to low gene density and SSR density was identified in the chromosomes in the joint analysis, and it was associated with secondary metabolites and amino acid biosynthesis pathways. CRISPR/Cas9, as a technology to drive crop improvement, with the identified editing sites and effector elements, provides valuable tools for functional studies and molecular breeding in Camellia sinensis.


Asunto(s)
Sistemas CRISPR-Cas , Camellia sinensis , Sistemas CRISPR-Cas/genética , Camellia sinensis/genética , Genoma de Planta , Edición Génica/métodos
13.
JCI Insight ; 8(21)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37707949

RESUMEN

Application of classic liver-directed gene replacement strategies is limited in genetic diseases characterized by liver injury due to hepatocyte proliferation, resulting in decline of therapeutic transgene expression and potential genotoxic risk. Wilson disease (WD) is a life-threatening autosomal disorder of copper homeostasis caused by pathogenic variants in copper transporter ATP7B and characterized by toxic copper accumulation, resulting in severe liver and brain diseases. Genome editing holds promise for the treatment of WD; nevertheless, to rescue copper homeostasis, ATP7B function must be restored in at least 25% of the hepatocytes, which surpasses by far genome-editing correction rates. We applied a liver-directed, nuclease-free genome editing approach, based on adeno-associated viral vector-mediated (AAV-mediated) targeted integration of a promoterless mini-ATP7B cDNA into the albumin (Alb) locus. Administration of AAV-Alb-mini-ATP7B in 2 WD mouse models resulted in extensive liver repopulation by genome-edited hepatocytes holding a proliferative advantage over nonedited ones, and ameliorated liver injury and copper metabolism. Furthermore, combination of genome editing with a copper chelator, currently used for WD treatment, achieved greater disease improvement compared with chelation therapy alone. Nuclease-free genome editing provided therapeutic efficacy and may represent a safer and longer-lasting alternative to classic gene replacement strategies for WD.


Asunto(s)
Degeneración Hepatolenticular , Ratones , Animales , Degeneración Hepatolenticular/terapia , Degeneración Hepatolenticular/tratamiento farmacológico , Cobre/metabolismo , Edición Génica , Hepatocitos/metabolismo
14.
PeerJ ; 11: e15771, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547711

RESUMEN

CRISPR/Cas9-mediated genome editing technology has been widely used for the study of gene function in crops, but the differences between species have led to widely varying genome editing efficiencies. The present study utilized a potato hairy root genetic transformation system and incorporated a rapid assay with GFP as a screening marker. The results clearly demonstrated that salt and osmotic stress induced by NaCl (10 to 50 mM) and mannitol (50 to 200 mM) treatments significantly increased the positive rates of genetic transformation mediated by A. rhizogenes and the editing efficiency of the CRISPR/Cas9-mediated genome editing system in potato. However, it was observed that the regeneration of potato roots was partially inhibited as a result. The analysis of CRISPR/Cas9-mediated mutation types revealed that chimeras accounted for the largest proportion, ranging from 62.50% to 100%. Moreover, the application of salt and osmotic stress resulted in an increased probability of null mutations in potato. Notably, the highest rate of null mutations, reaching 37.5%, was observed at a NaCl concentration of 10 mM. Three potential off-target sites were sequenced and no off-targeting was found. In conclusion, the application of appropriate salt and osmotic stress significantly improved the editing efficiency of the CRISPR/Cas9-mediated genome editing system in potato, with no observed off-target effects. However, there was a trade-off as the regeneration of potato roots was partially inhibited. Overall, these findings present a new and convenient approach to enhance the genome editing efficiency of the CRISPR/Cas9-mediated gene editing system in potato.


Asunto(s)
Edición Génica , Solanum tuberosum , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Solanum tuberosum/genética , Cloruro de Sodio/farmacología , Presión Osmótica
15.
Theor Appl Genet ; 136(9): 187, 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37572171

RESUMEN

KEY MESSAGE: Modifications of multiple copies of the BnaSAD2 gene family with genomic editing technology result in higher stearic acid content in the seed of polyploidy rapeseed. Solid fats from vegetable oils are widely used in food processing industry. Accumulating data showed that stearic acid is more favorite as the major composite among the saturate fatty acids in solid fats in considerations of its effects on human health. Rapeseed is the third largest oil crop worldwide, and has potential to be manipulated to produce higher saturated fatty acids as raw materials of solid fats. Toward that end, we identified four SAD2 gene family members in B. napus genome and established spatiotemporal expression pattern of the BnaSAD2 members. Genomic editing technology was applied to mutate all the copies of BnaSAD2 in this allopolyploid species and mutants at multiple alleles were generated and characterized to understand the effect of each BnaSAD2 member on blocking desaturation of stearic acid. Mutations occurred at BnaSAD2.A3 resulted in more dramatic changes of fatty acid profile than ones on BnaSAD2.C3, BnaSAD2.A5 and BnaSAD2.C4. The content of stearic acid in mutant seeds with single locus increased dramatically with a range of 3.1-8.2%. Furthermore, combination of different mutated alleles of BnaSAD2 resulted in more dramatic changes in fatty acid profiles and the double mutant at BnaSAD2.A3 and BnaSAD2.C3 showed the most dramatic phenotypic changes compared with its single mutants and other double mutants, leading to 11.1% of stearic acid in the seeds. Our results demonstrated that the members of BnaSAD2 have differentiated in their efficacy as a Δ9-Stearoyl-ACP-Desaturase and provided valuable rapeseed germplasm for breeding high stearic rapeseed oil.


Asunto(s)
Brassica napus , Brassica rapa , Humanos , Brassica napus/genética , Brassica napus/metabolismo , Edición Génica , Fitomejoramiento , Ácidos Grasos/metabolismo , Ácidos Esteáricos/metabolismo , Aceites de Plantas , Brassica rapa/genética , Semillas/genética , Semillas/metabolismo
16.
Sci Rep ; 13(1): 12246, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558681

RESUMEN

Genome editing is a powerful breeding technique that introduces mutations into specific gene sequences in genomes. For genome editing in higher plants, nucleotides for artificial nuclease (e.g. TALEN or CRISPR-Cas9) are transiently or stably introduced into the plant cells. After the introduction of mutations by artificial nucleases, it is necessary to select lines that do not contain the foreign nucleotides to overcome GMO regulation; however, there is still no widely legally authorized and approved method for detecting foreign genes in genome-edited crops. Recently, k-mer analysis based on next-generation sequencing (NGS) was proposed as a new method for detecting foreign DNA in genome-edited agricultural products. Compared to conventional methods, such as PCR and Southern hybridization, in principle, this method can detect short DNA fragments with high accuracy. However, this method has not yet been applied to genome-edited potatoes. In this study, we evaluated the feasibility of k-mer analysis in tetraploid potatoes by computer simulation, and also evaluated whether the k-mer method can detect foreign genes with high accuracy by analyzing samples of genome-edited potatoes. We show that when NGS data (at a depth of × 30 the genome size) are used, the k-mer method can correctly detect foreign genes in the potato genome even with the insertion of DNA fragments of 20 nt in length. Based on these findings, we expect that k-mer analysis will be one of the main methods for detecting foreign genes in genome-edited potatoes.


Asunto(s)
Sistemas CRISPR-Cas , Solanum tuberosum , Sistemas CRISPR-Cas/genética , Solanum tuberosum/genética , Simulación por Computador , Fitomejoramiento , Edición Génica/métodos , ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nucleótidos
17.
Int J Mol Sci ; 24(15)2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37569861

RESUMEN

The progressive deterioration of function and structure of brain cells in neurodegenerative diseases is accompanied by mitochondrial dysfunction, affecting cellular metabolism, intracellular signaling, cell differentiation, morphogenesis, and the activation of programmed cell death. However, most of the efforts to develop therapies for Alzheimer's and Parkinson's disease have focused on restoring or maintaining the neurotransmitters in affected neurons, removing abnormal protein aggregates through immunotherapies, or simply treating symptomatology. However, none of these approaches to treating neurodegeneration can stop or reverse the disease other than by helping to maintain mental function and manage behavioral symptoms. Here, we discuss alternative molecular targets for neurodegeneration treatments that focus on mitochondrial functions, including regulation of calcium ion (Ca2+) transport, protein modification, regulation of glucose metabolism, antioxidants, metal chelators, vitamin supplementation, and mitochondrial transference to compromised neurons. After pre-clinical evaluation and studies in animal models, some of these therapeutic compounds have advanced to clinical trials and are expected to have positive outcomes in subjects with neurodegeneration. These mitochondria-targeted therapeutic agents are an alternative to established or conventional molecular targets that have shown limited effectiveness in treating neurodegenerative diseases.


Asunto(s)
Mitocondrias , Enfermedades Neurodegenerativas , Humanos , Animales , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Membranas Mitocondriales/metabolismo , Diseño de Fármacos , Ensayos Clínicos como Asunto , Edición Génica
19.
Future Microbiol ; 18: 443-459, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37317864

RESUMEN

Despite achieving unparalleled progress in the field of science and technology, the global health community is still threatened by the looming pressure of infectious diseases. One of the greatest challenges is the rise in infections by antibiotic-resistant microorganisms. The misuse of antibiotics has led to the present circumstances, and there is seemingly no solution. There is imminent pressure to develop new antibacterial therapies to curb the rise and spread of multidrug resistance. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas, having immense potential as a gene-editing tool, has gained considerable attention as an alternative antibacterial therapy. Strategies, aiming to either eliminate pathogenic strains or to restore sensitivity to antibiotics, are the main focus of research. This review deals with the development of CRISPR-Cas antimicrobials and their delivery challenges.


Bacteria resistant to drugs have become a major global health problem. Infections caused by resistant bacteria have many social and economic consequences, particularly in low- and middle-income countries. The WHO has estimated that 10 million people will die every year due to drug resistance by 2050. Due to the lengthy amount of time and high costs of developing new drugs, we must explore alternatives. One such alternative includes clustered regularly interspaced short palindromic repeats (CRISPR)-Cas, a tool with the ability to edit the genetic material of bacteria. CRISPR-Cas can restore sensitivity to drugs as well as kill bacteria.


Asunto(s)
Antibacterianos , Sistemas CRISPR-Cas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana/genética , Edición Génica , Sistema Inmunológico
20.
Plant Commun ; 4(6): 100637, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37301980

RESUMEN

This study reports the development of a programmed pollen self-elimination CRISPR-Cas (PSEC) system in which the pollen is infertile when PSEC is present in haploid pollen. PSEC can be inherited through the female gametophyte and retains genome editing activity in vivo across generations. This system could greatly alleviate serious concerns about the widespread diffusion of genetically modified (GM) elements into natural and agricultural environments via outcrossing.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Zea mays/genética , Plantas Modificadas Genéticamente/genética , Polen/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA